
OpenDR: An Open Toolkit for Enabling High Performance, Low
Footprint Deep Learning for Robotics

N. Passalis1, S. Pedrazzi2, R. Babuska3, W. Burgard4, D. Dias2, F. Ferro5, M. Gabbouj6, O. Green7, A. Iosifidis8,
E. Kayacan8, J. Kober3, O. Michel2, N. Nikolaidis1, P. Nousi1, R. Pieters6, M. Tzelepi1, A. Valada4, and A. Tefas1

Abstract— Existing Deep Learning (DL) frameworks typi-
cally do not provide ready-to-use solutions for robotics, where
very specific learning, reasoning, and embodiment problems
exist. Their relatively steep learning curve and the different
methodologies employed by DL compared to traditional ap-
proaches, along with the high complexity of DL models, which
often leads to the need of employing specialized hardware
accelerators, further increase the effort and cost needed to
employ DL models in robotics. Also, most of the existing
DL methods follow a static inference paradigm, as inherited
by the traditional computer vision pipelines, ignoring active
perception, which can be employed to actively interact with
the environment in order to increase perception accuracy. In
this paper, we present the Open Deep Learning Toolkit for
Robotics (OpenDR). OpenDR aims at developing an open,
non-proprietary, efficient, and modular toolkit that can be
easily used by robotics companies and research institutions to
efficiently develop and deploy AI and cognition technologies to
robotics applications, providing a solid step towards addressing
the aforementioned challenges. We also detail the design choices,
along with an abstract interface that was created to overcome
these challenges. This interface can describe various robotic
tasks, spanning beyond traditional DL cognition and inference,
as known by existing frameworks, incorporating openness,
homogeneity and robotics-oriented perception e.g., through
active perception, as its core design principles.

I. INTRODUCTION
Deep Learning (DL) led to a number of spectacular

applications, ranging from self-driving cars to robots that

1N. Passalis, N. Nikolaidis, P. Nousi, M. Tzelepi, and A.
Tefas are with Dept. of Informatics, Aristotle University of
Thessaloniki, Greece. {passalis, nnik, paranous, tzelepi,
tefas}@csd.auth.gr

2S. Pedrazzi, D. Dias and O. Michel are with Cyberbotics,
Switzerland. {stefania.pedrazzi, daniel.dias,
olivier.michel}@cyberbotics.com

3R. Babuska and J. Kober are with Dept. of Cognitive Robotics,
Delft University of Technology, The Netherlands. {r.babuska,
j.kober}@tudelft.nl

4W. Burgard and A. Valada are with Dept. of Computer
Science, University of Freiburg, Germany. {burgard,
valada}@cs.uni-freiburg.de

5F. Ferro is with PAL Robotics, Spain.
francesco.ferro@pal-robotics.com

6M. Gabbouj and R. Pieters are with the units of Computing Sciences, and
Automation Technology and Mechanical Engineering, Tampere University,
Finland. {moncef.gabbouj, roel.pieters}@tuni.fi

7O. Green is with Agrointelli, Denmark. olg@agrointelli.com
8 A. Iosifidis and E. Kayacan are with the Department of Elec-

trical and Computer Engineering, Aarhus University, Denmark. {ai,
erdal}@ece.au.dk

This work was supported by the European Union’s Horizon 2020
Research and Innovation Program (OpenDR) under Grant 871449. This
publication reflects the authors’ views only. The European Commission is
not responsible for any use that may be made of the information it contains.

OpenDR
 Toolkit 

Simulation
Environments

Robotics
Development

Deep Learning
Frameworks

Fig. 1. OpenDR lies at the intersection between deep learning frameworks,
simulation environments and robotics development tools

outperform humans in various tasks [1]. However, employing
DL in robotics leads to very specific learning, reasoning,
and embodiment problems and research questions that are
typically not addressed by the computer vision and machine
learning communities. At the same time, existing DL frame-
works, such as PyTorch [2], usually do not provide ready-
to-use solutions for robotics, have a steep learning curve and
employ a different methodology than traditional approaches.
Furthermore, the high complexity of DL models often leads
to the need of employing specialized accelerators, in order to
ensure that models will be able to be successfully deployed
in edge devices with limited computational power, which
further increases the cost and effort required to incorporate
DL models into robotic systems. At the same time, despite
these recent achievements of DL, most of the existing meth-
ods also suffer from a significant drawback: they follow a
static inference paradigm, as inherited by the traditional com-
puter vision pipelines. More specifically, DL models perform
inference on a fixed and static input, ignoring that robots
have the ability to interact with the environment to better
sense their surroundings. This approach, usually referred to
as called active perception [3], allows for manipulating the
robot/sensor to acquire a better and more clean view/signal.

Therefore, the need for an open DL toolkit that contains
easy to train and deploy real-time, lightweight, and efficient
DL models for robotics is evident. In this paper, we present
the Open Deep Learning Toolkit for Robotics (OpenDR).
OpenDR aims at developing an open, non-proprietary mod-
ular toolkit that can be easily used by robotics companies

ar
X

iv
:2

20
3.

00
40

3v
1 

 [
cs

.R
O

] 
 1

 M
ar

 2
02

2



and research institutions to efficiently develop and deploy AI
and cognition technologies to robotics applications. At a high
level, OpenDR contains a selection of cognition, perception
and robot action and decision making algorithms, along with
general-purpose functionalities that are necessary for com-
mon robotics tasks. OpenDR provides an intuitive and easy
to use Python interface, a C API for selected tools, a wealth
of usage examples and supporting tools, as well as ready-
to-use Robot Operating System (ROS) nodes for various
perception tasks. OpenDR is built to support Webots [4],
while it also extensively follows industry standards, such as
ONNX model format [5] and OpenAI Gym Interface [6],
lying at the intersection between DL frameworks, simulation
environments and robotics development tools, as shown in
Fig. 1.

The main contribution of this paper is to present the design
principles of OpenDR, as well as the architecture that was de-
veloped following these principles. Designing such a toolkit,
that will incorporate a wide range of cognition and perception
approaches, in a modular and homogeneous manner bears
significant challenges, as further explained in this paper. To
this end, in this paper we detail the design choices, along
with the abstract interface that was created to overcome these
challenges. This interface can describe various robotic tasks,
spanning beyond traditional DL cognition and inference,
as known by existing frameworks, incorporating openness,
homogeneity and robotics-oriented perception e.g., through
active perception, as its core design principles. The toolkit
is available for download at github.com/opendr-eu/
opendr and distributed through multiple channels.

The rest of this paper is structured as follows. In Section II
we introduce the requirements and design principles of
OpenDR. Then, in Section III we describe the architecture
of OpenDR, while in Section IV we present the engine
package of OpenDR, which acts as the base for ensuring
the homogeneity of the toolkit. Finally, Section V provides
a few usage examples, demonstrating the ease of use of the
toolkit, while Section VI concludes this paper.

II. OPENDR REQUIREMENTS AND DESIGN PRINCIPLES

This section provides a brief overview of the key require-
ments and design principles that OpenDR toolkit should
meet. OpenDR should have the following system qualities:

• Ease of use: OpenDR should be easy to use and
well documented so that even new users with minimal
background in DL can easily start working with it.

• Openness: To maximize the visibility and create a com-
munity around the OpenDR toolkit, all toolkit sources
should be publicly provided under the Apache license
version 2.0.

• Modularity: OpenDR should provide a common inter-
face to a set of learning tools and it should be designed
in such a way that it is easy to add new functionalities.

• Portability: When technically possible, the toolkit
should run on all major operating systems (Linux, Win-
dows, and macOS) and embedded hardware, allowing
for easy deployment, as well as easy experimentation

 
Deep human-centric Perception and Cognition 

 
 
 
 
 
 

Deep Robot Action and Decision Making

Deep Environment Perception and Cognition 

face, person and body part detection, person and face recognition, face/body
part/skeleton pose estimation, person/face/body part tracking, human activity
recognition, facial expression recognition, gesture analysis and recognition,
speech recognition, biosignal analysis, and multimodal human-centric
perception and cognition.

semantic scene segmentation and understanding, 2D/3D object detection
and recognition,  2D/3D object tracking, SLAM, sensor information fusion, as
well as 3D scene reconstruction

deep reinforcement learning (DRL)-based control,  DL-based planning and
navigation, learning from human demonstrations, and  efficient and effective
human-robot interaction.

Fig. 2. OpenDR aims to cover a wide range of different robotics
applications

in various environments and simulators. CPU execution
and (optional) GPU acceleration should be supported.

• Dependencies: OpenDR should rely on a consistent and
minimal number of third-party libraries, as well as avoid
a monolithic design.

• Interoperability: OpenDR should be an algorithm and
platform agnostic toolkit that could be easily extended
to interoperate with widely used applications (e.g., DL
libraries, robotics simulators, etc.).

At the same time, OpenDR aims to cover a wide range of
different applications, including deep human-centric percep-
tion and cognition, environment perception and cognition, as
well as robot action and decision making, as shown in Fig. 2.
Apart from these basic perception and control functionalities,
OpenDR should also provide tools for enabling automatic
hyperparameter tuning for Deep Reinforcement Learning
(DRL) methods to minimize the effort needed for training
such models.

Furthermore, in order to maximize the impact of the devel-
oped toolkit in real-world robotics applications, the following
requirements regarding DL models have been identified:

• Pretrained Models: OpenDR should provide pretrained
models to allow users to directly start using the toolkit
with minimal time investment.

• Active Perception: OpenDR should provide active per-
ception in a transparent manner, allowing the robotic
system to actively interact with its environment in order
to improve the perception accuracy.

• Fine-tuning: OpenDR should allow pretrained DNN-
based controllers to continue learning online, such that
it can compensate for internal uncertainties and external
disturbances.

• Prior Knowledge: OpenDR should allow the user to
include prior knowledge on control tasks.

• Co-integration of simulation and learning: OpenDR
should provide the necessary means to allow for co-
integration of simulation and model training, minimiz-
ing the effort needed for training and evaluating DL
models.

github.com/opendr-eu/opendr
github.com/opendr-eu/opendr


Simulation
Interfaces

Python  
Interface

C/C++ Inference
Interface

ROS/ROS2
Inference Interface

Simulator
(Webots)

Data

Deep Human-centric
Perception and Cognition 

Deep Robot Action and
Decision Making 

Deep Environment
Perception and Cognition 

Training Interface 

Python
Inference 

Engine

Inference Interface 

Trained
Model

OpenDR

Fig. 3. OpenDR toolkit structure

OpenDR should also ensure that the provided models are
efficient and with realistic requirements, given that many
perception tasks are often performed on relatively low-power
edge devices. For this reason, the developed methods and
models should fulfill some minimal performance require-
ments. For each perception task, OpenDR should provide at
least one real-time algorithm for a reference embedded GPU-
based system. Real-time in OpenDR is defined as achieving
25 Frames Per Second (FPS) when performing inference. At
the same time, to ensure that multiple algorithms could be
executed on the same device, implementations should aim to
use no more than 1GB of RAM per model. Finally, high-
resolution analysis in real-time should also be supported for
algorithms that can benefit from this, e.g., for detecting very
small objects from large distances.

III. OPENDR ARCHITECTURE

OpenDR toolkit has been designed to meet the ease of
use, modularity, portability, efficiency, minimal dependency,
and interoperability requirements described in Section II. To
this end, the OpenDR toolkit has a modular design and it
is composed of three different modules, as summarized in
Fig. 3 and described below:

• Training Module: The training module provides a large
set of functionalities that allow users to train DL models
and export the resulting trained binary model so that it
can be used on any supported platform.

• Inference Module: The inference module provides all
functionalities required to run the binary trained DL
models on the supported platforms. A set of pretrained
models have been developed and included in the toolkit
to allow users to directly use them for a number of
different use cases and applications.

• Simulation Module: OpenDR toolkit is developed in
such a manner ensuring full compatibility with the
Webots simulation software [4]. Users can model their
scenario in Webots and use it to train the DL model
or apply pretrained models to complete some tasks
and evaluate the performance. The simulation module
is responsible for providing the necessary interface to
Webots, as well as other data generation and simulation

tools.
The toolkit core application is written in Python and its
structure is depicted in Fig. 3. Note that the training and in-
ference module are integrated in the Python implementation,
since training and inference are closely tied. On the other
hand, C/C++ and ROS/ROS2 interfaces for inference and
simulation are separated and provided as individual modules.
Note that OpenDR extensively relies on cross-platform tools
and frameworks, such as Python and PyTorch, ensuring
that the toolkit can be used on a wide variety of different
platforms. OpenDR also enforces the homogeneity of the
toolkit using standardized interfaces through abstract class
definitions, as described below.
Python API The Python API of OpenDR is split into five
discrete packages:

1) engine, which contains re-usable definitions of various
classes that are needed to implement the core function-
ality of OpenDR,

2) perception, which contains implementations of DL
algorithms for various perception tasks,

3) control, which contains implementation of DL-based
control algorithms,

4) planning, which contains implementations of DL-
based planning algorithms, and

5) simulation, which contains the necessary tools for
interfacing the learning algorithms with simulation
environments.

All algorithm implementations are based on the engine
package to ensure code uniformity and modularity. The
interactions between the various engine-related classes are
further discussed in Section IV.
C/C++ API Apart from providing a training and inference
API in Python, OpenDR also provides a C/C++ inference
API to allow for running the developed models for high-
performance applications as efficiently as possible, e.g., on
embedded devices. Since this API will be only needed for
inference, its function is greatly simplified compared to the
Python API. Specifically, for each algorithm supported by
the C/C++ API the following two functions are supported:
load X() and infer X(), where X is the name of the
implemented algorithm. The first one is responsible for load-



ing the model saved in OpenDR format in the appropriate
form for inference, while the second one is for performing
inference using the saved model. Additional structures and
auxiliary functions for supporting the inference process are
defined following the Python data and target class definitions
and provided as standalone functions. Similar to the Python
API, these definitions are shared among the algorithms
to ensure the homogeneity of the toolkit. Note that this
API is built leveraging the C++ runtime engine of ONNX,
ensuring both the simplicity of the implementation and well
high performance with minimal development cost. Currently,
OpenDR provides a C API only for selected tools.
ROS/ROS2 API For each of the perception, control, and
planning tasks, OpenDR also provides standalone ROS
nodes, demonstrating the generality and efficiency of the
library, while also providing a ready-to-use solution for many
different tasks. These nodes act as wrapper nodes to the main
Python API. OpenDR re-uses, as much as possible, standard
ROS interfaces and messages for the communication be-
tween different nodes. Furthermore, OpenDR has developed
a bridge subsystem, provided as a standalone ROS package
called ros bridge which provides an easy to use interface
to translate ROS messages into OpenDR data types and vice
versa.
Data Handling A large variety of different formats exist
and OpenDR should use a well-defined format to ensure
the compatibility of the library with well-established open
standards and formats. For example, an image can be read
in at least 8 different ways based on the channel ordering
(e.g., RGB or BGR), number representation (e.g., float
or uint8) and dimension ordering (e.g., channels first or
last). To this end, OpenDR has defined and fully follows one
standard way of representing data, adopting well-established
formats (e.g., those used by PyTorch) when possible. This is
enforced during the development by using a number of pre-
defined tools for data loading, minimizing the possibility that
an algorithm could expect data in a different format.
Trained Models OpenDR has selected ONNX as the pre-
ferred data format for storing trained models [5]. However,
ONNX is often not enough to store metadata related to the
models and/or other data structures needed for the function
of different algorithms. At the same time, the discrepancies
between DL frameworks and the current operators supported
by ONNX dictate using native formats in some applications.
To this end, OpenDR has defined a data structure for storing
models trained with OpenDR toolkit. This data structure
relies on existing open standards, while it allows for transpar-
ently encapsulating existing formats (e.g., ONNX or native
formats used by DL libraries). In this manner, the inter-
operability with these frameworks is readily ensured, since
the users can directly extract the trained models from the
OpenDR model format. OpenDR model format is composed
of a JSON file, which contains the necessary metadata, as
well as a number of supporting files that are described within
this JSON file. OpenDR also maintains an individual open
repository of open models and data, allowing all algorithms
to directly download pretrained models without having the

Data BaseLearner

LearnerRL

Learner

Dataset

LearnerActive

Target

BaseTarget

Fig. 4. OpenDR abstract class interactions (arrows denote inheritance, lines
denote interaction)

user download them separately.
Distribution To maximize the visibility and ease of use of
the toolkit, we provide three different ways for installing the
toolkit:

1) by cloning the GitHub repository,
2) using the pip package manager and PyPI repository,
3) using docker [7].

The first way provides a fully functional, latest version of
the toolkit that can be installed on various platforms. pip
is a straightforward way to install and experiment with
the Python API of the toolkit, while docker images are
provided to experiment with toolkit functionalities in a pre-
configured environment with very little effort, as well as for
other containerized applications. Docker images can readily
run on all platforms where docker is available, while also
providing access to GPU acceleration. Furthermore, to ensure
the modularity of the toolkit, separate pip packages are
provided for each submodule of the Python API of the
toolkit. For example, if a user needs to use only object
detection algorithms, the corresponding package can be used
to avoid pulling unnecessary dependencies. Furthermore, pip
packages are also platform agnostic, allowing for providing
both CPU execution and GPU acceleration based on the
configuration of the system. This is ensured by relying on
packages that can switch between CPU and GPU accelera-
tion, e.g., PyTorch.

IV. ENGINE PACKAGE

The engine module contains the necessary abstract classes,
as well as various definitions to ensure the homogeneity of
OpenDR toolkit, as depicted in Fig. 3 and further detailed
in Fig. 4. More specifically, it contains:

• Abstract class definitions for trainable models (Base-
Learner, Learner, LearnerActive).

• An abstract class definition for datasets (Dataset), as
well as a class for supporting native datasets.

• An abstract class definition for representing different
types of data (Data).

• Concrete class definitions for representing different
types of data (e.g., Image, Video, Timeseries, Vector,
PointCloud, etc.).

• Abstract class definitions for outputs (Target), as well
as for annotations (BaseTarget).



• Concrete class definitions for prediction outputs as well
as for annotations inheriting the Target class (e.g.,
Category, Pose, BoundingBox, SpeechCommand, etc.).

This modular structure allows for easily adding new classes
to support new functionalities as the development progresses,
as well as maintaining the homogeneity of the implementa-
tion in an easy way. In the rest of this section, we provide
detailed descriptions of the Learner classes, along with the
Data, Target and other supporting classes.
Learner Classes All classes responsible for implementing
any perception algorithm inherit the abstract BaseLearner
class to ensure that a common interface is provided for
training. These classes should provide methods for:

1) training models (fit()),
2) evaluating the performance of a trained model

(eval()),
3) performing inference (infer()),
4) saving/loading a trained model (save()/load()),
5) optimizing a trained model for inference

(optimize()),
6) downloading pretrained models and supporting data

(download()), and
7) resetting the state of the model, if applicable,

(reset()).
BaseLearner class provides the interface specifications that
are shared among different Learner classes. BaseLearner
also specifies various parameters that can alter the behavior
of models during the training and inference process. These
parameters, along with any algorithm / model-specific param-
eters, are carefully documented in OpenDR’s documentation.
Furthermore, inference can be either stateless or stateful. For
stateful inference algorithms (e.g., recurrent neural networks
or tasks like tracking), the reset() method can be used
for re-initializing them. Most perception algorithms are im-
plementing the basic Learner class. This class provides
the interface for training, inference, and evaluation methods.
Also, note that fit() and eval() return a standardized
dictionary containing statistics regarding the training/evalu-
ation process.
Data and Dataset Classes To allow representing different
types of data, an abstract Data class has been created. This
class serves as the basis for the more complicated data types.
For data classes, conversion from (using the constructor) and
to NumPy arrays (using the numpy() method) is supported
to make the library compliant with the standard pipelines
used by the computer vision and robotics communities.
Furthermore, an opencv() function is used for images to
easily get the data in an OpenCV-compliant format [8]. Also,
other supporting functions, such as open() for loading the
data from files and convert() for performing conversions
in a standarized way, ensure that the user will easily provide
(and get back) the data in the correct format to (from) the
toolkit. Data class serves as the basis for implementing other
data types that are commonly used, such as:

1) Vector class, for representing one dimensional vectors,
2) Timeseries class, containing a series of multi-

dimensional measurements,
3) Image and Video classes, containing multi-channel

images and videos,
4) PointCloud and PointCloudWithCalibration class, con-

taining point cloud data (without/with calibration data),
and others.

Furthermore, two different types of dataset classes are
supported by OpenDR (both inheriting the same abstract
Dataset class). The first one is the DatasetIterator. DatasetIt-
erator serves as an abstraction layer over the different types
of datasets following PyTorch dataset conventions. In this
way, it provides the opportunity to users to implement dif-
ferent kinds of datasets while providing a uniform interface.
Furthermore, the ExternalDataset provides a way for han-
dling well-known external dataset formats (e.g., COCO [9],
PascalVOC [10], Imagenet [11], etc.) directly by OpenDR,
without requiring any special effort by the users in writing
a specific loader.
Target classes The output of various algorithms (predicted
targets) is represented using the Target class. This class
is also used to represent the training annotations, i.e., the
targets that are used during the training process. First, a root
BaseTarget class has been created to allow for setting the
hierarchy of different targets. Classes that inherit BaseTarget
can be used either as the output of an algorithm or as ground
truth annotations, but there is no guarantee that this is always
possible, i.e., that both options are always possible. This is in
contrast with the Target class, which always guarantees that
the subclasses can be used for both cases. Therefore, classes
that are only used to provide ground truth annotations must
inherit from BaseTarget instead of Target. Then, to allow
representing different types of targets, an abstract Target
class has been created. This class serves as the basis for
more specialized forms of targets.

Concrete classes inheriting Target class are used both to
specify training annotations and output data for perception
algorithms. Some examples of these classes are the follow-
ing:

• Category for simple classification problems,
• BoundingBox and BoundingBox3D for individual

bounding boxes,
• Pose for problems related to human pose estimation and

(keypoint-based) body part detection,
• Heatmap for multi-class segmentation problems or

multi-class problems that require heatmap annotation-
s/outputs, and others.

Please also note that OpenDR follows the well-established
OpenAI Gym interface for interfacing reinforcement learning
algorithms [6].
Active Perception A standard for representing active per-
ception outputs has also been specified. To allow algorithms
to handle active perception scenarios, each prediction/target
class also supports using an additional action field that con-
tains a description of the next action that can be performed to
further improve the perception accuracy. All action related
classes inherit from an abstract ActionBase class. Then, a



Fig. 5. Active perception outputs can be represented in a homogenous way
using the proposed application agnostic control specification

concrete Action class is used to describe actions that can
be performed when working with algorithms that support
controlling 1-axis only, 2-axes, 3-axes, or 4-axes, in order to
improve the perception accuracy. The exact number of axes
supported depends on the way each algorithm is trained. For
all axes, it is assumed that the robot moves in a sphere and
a real value from −1 to 1 is provided for the movement on
each axis, as shown in Fig. 5. Note the positive sign (+) and
negative sign (-) for matching between the positive control
interval (0 . . . 1) and the negative control interval (−1 . . . 0).

V. USAGE EXAMPLES

In this section we provide simple usage examples to
demonstrate the ease of use of OpenDR. In the following
example we demonstrate how to use the Single Short Detec-
tor (SSD) [12] for person detection:

from opendr.engine.data import Image
from opendr.perception.object_detection_2d import

↪→ SingleShotDetectorLearner

ssd = SingleShotDetectorLearner(device="cpu")
ssd.download(".", mode="pretrained")
ssd.load("./ssd_default_person")
img = Image.open("example.jpg")
boxes = ssd.infer(img)

Note that we have the opportunity to select the inference
device when initializing the detector, as well as the utility
provided for downloading a pretrained person detection
model. Then, we use the Image class to load an image
and perform object detection. We can also use visualization
utilities to examine the results as shown below:

from opendr.perception.object_detection_2d import
↪→ draw_bounding_boxes

draw_bounding_boxes(img.opencv(), boxes,
↪→ class_names=ssd.classes, show=True)

It is worth noting that using any tool from OpenDR follows
the same pipeline (initialize the model, train/load a pretrained
model and then performance inference). For example, for
running pose estimation using the OpenPose algorithm [13],
we can follow the same pipeline:

from opendr.perception.pose_estimation import
↪→ LightweightOpenPoseLearner as PoseEstimator

from opendr.engine.data import Image

pose_estimator = PoseEstimator(device="cuda")
pose_estimator.download(path=".")
pose_estimator.load("openpose_default")
img = Image.open("example.png")
poses = pose_estimator.infer(img)
print(poses)

Note that for this tool we selected a GPU accelerator for
inference (device="cuda"). Also, OpenDR automatically
casts the outputs of the models into strings when passed to
the print() function to allow users to easily examine the
inference results.

VI. CONCLUSIONS

In this paper, we presented the design principles of
OpenDR, along with the architecture that was developed
following these principles. To this end, an abstract interface
was created to provide a uniform and homogeneous inter-
face for various robotic tasks, spanning beyond traditional
DL cognition and inference, while going towards robotics-
oriented perception. OpenDR is actively developed and it is
expected that by its third major release it will incorporate
active perception for all of the major tools that are imple-
mented. Finally, it is worth mentioning that in less than
2 months after the first release of the toolkit, it has been
downloaded/cloned more than 10,000 times, demonstrating
its high potential in this rapidly evolving area.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436–444, 2015.

[2] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances
in Neural Information Processing Systems, vol. 32, 2019.

[3] R. Bajcsy, Y. Aloimonos, and J. K. Tsotsos, “Revisiting active per-
ception,” Autonomous Robots, vol. 42, no. 2, pp. 177–196, 2018.

[4] O. Michel, “Cyberbotics ltd. webots™: professional mobile robot sim-
ulation,” International Journal of Advanced Robotic Systems, vol. 1,
no. 1, p. 5, 2004.

[5] O. R. developers, “ONNX Runtime,” https://onnxruntime.ai/, 2021.
[6] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-

man, J. Tang, and W. Zaremba, “OpenAI gym,” arXiv preprint
arXiv:1606.01540, 2016.

[7] C. Boettiger, “An introduction to docker for reproducible research,”
ACM SIGOPS Operating Systems Review, vol. 49, no. 1, pp. 71–79,
2015.

[8] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with
the OpenCV library. O’Reilly Media, Inc., 2008.

[9] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common objects in
context,” in Proc. European Conference on Computer Vision, 2014,
pp. 740–755.

[10] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zis-
serman, “The Pascal visual object classes (VOC) challenge,” Interna-
tional Journal of Computer Vision, vol. 88, no. 2, pp. 303–338, 2010.

[11] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet
large scale visual recognition challenge,” International Journal of
Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

[12] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “Ssd: Single shot multibox detector,” in Proc. European
Conference on Computer Vision. Springer, 2016, pp. 21–37.

[13] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d
pose estimation using part affinity fields,” in Proc. IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 7291–7299.

https://onnxruntime.ai/

	I INTRODUCTION
	II OpenDR Requirements and Design Principles
	III OpenDR ARCHITECTURE
	IV Engine Package
	V USAGE EXAMPLES
	VI CONCLUSIONS
	References

