Automated Tuning and Configuration of Path Planning Algorithms

Ruben Burger, Mukunda Bharatheesha!, Marc van Eert* and Robert Babugka'

Abstract— A large number of novel path planning methods
for a wide range of problems have been described in literature
over the past few decades. These algorithms can often be
configured using a set of parameters that greatly influence
their performance. In a typical use case, these parameters are
only very slightly tuned or even left untouched. Systematic
approaches to tune parameters of path planning algorithms
have been largely unexplored. At the same time, there is a rising
interest in the planning and robotics communities regarding
the real world application of these theoretically developed and
simulation-tested planning algorithms. In this work, we propose
the use of Sequential Model-based Algorithm Configuration
(SMAC) tools to address these concerns. We show that it is
possible to improve the performance of a planning algorithm
for a specific problem without the need of in-depth knowledge
of the algorithm itself. We compare five planners that see a
lot of practical usage on three typical industrial pick-and-place
tasks to demonstrate the effectiveness of the method.

I. INTRODUCTION

Recently there has been a growing interest in the use of
robotics software. With the increasing popularity of tools
like ROS [1], Movelt! [2], Open Motion Planning Library
(OMPL) [8] and OpenRave [3], even hobbyists have now
ventured into robotics. These tools have also played a major
role in enabling end-users to leverage state-of-the art for real
world applications.

Development of novel planning methods with high the-
oretical merit makes up a large body of research within
the motion planning community. Many of these methods are
designed to solve a certain set of problems that have some
specific characteristic. Consider Transition-based RRT (T-
RRT) [4], which combines the exploration strength of RRTs
with cost-map methods in order to guide the algorithms to
paths that are low cost according to a specified cost metric.
T-RRT manages to efficiently solve the posed problem, but
how it translates to a different domain is unclear and difficult
to estimate without a significant effort. A second example
can be found in the set of informed planners like Informed-
RRT and BIT* [5][6]. These planners work very well for
scenarios in which the obstacles take a certain shape in
the configuration space, but it is unclear how they can be
leveraged for other classes of problems. They also have a
number of configurable parameters that are difficult to un-
derstand without significant background knowledge. Another
set of planners that use heuristics to guide the search are
Kinodynamic Planning by Interior-Exterior Cell Exploration

T Authors are with the Faculty of Mechanical, Maritime and Materials En-
gineering, Delft University of Technology, 2628 CD Delft, The Netherlands

{R.B.Burger,M.Bharatheesha, R.Babuska}@tudelft.nl

*Applied Scientist with Technolution BV, 2803 VW Gouda, The
Netherlands marc.van.eert@technolution.nl

(KPIECE) methods [7]. These planners show good practical
performance, but they use a discretization grid that makes
it difficult to understand how the planning performance is
affected by the configuration of the planning algorithm.

When presented with the problem of selecting a suitable
planner for a given real-world problem, one faces a myriad
of options. With several different available planning libraries
and approaches like OMPL [8], SBPL [9] , CHOMP [10] and
STOMP [11], it requires significant knowledge to determine
which planning algorithms are suitable for each particular
application. Choosing a good configuration for each planning
algorithm is even more difficult. A configuration includes
both categorical (for setting up the planner) and the nu-
merical (for tuning) parameters of the planner. The number
of parameters ranges for different planning algorithms from
just one for RRTConnect [12] to twelve for RRT*, all of
which may or may not have a significant impact on the
performance. Especially the frequent use of heuristics make
it very difficult to predict the behavior of an algorithm
as the heuristics interact with each other in unpredictable
ways. This makes manual configuration very difficult. In the
case of OMPL, some of the parameters are calculated using
the characteristics of the environment. While this is indeed
beneficial, a larger improvement can be expected with a more
rigorous tuning approach.

Typically, end users of motion planning software libraries
adhere to ad-hoc heuristics to tune parameters of planning
algorithms. The end result of such tuning would indeed
result in a satisfactory solution, but there is no indication
or feedback to the user if a better solution is possible. This
limitation can be addressed with a structured and pragmatic
approach to configure the planner. Ideally, it should be
possible for an end-user to provide a geometric description
of the manipulator and the scene, along with a set of typical
problems to let an automated tuning algorithm provide the
optimal configuration for each planner. Our work focuses
on providing a basic framework to achieve this goal. We
focus on the use of motion planning software [8], [2] for
robotic manipulators. Despite using a specific class of motion
planning software to present our results, our approach itself
is generic and is not limited by our choice. The following
section provides a brief review of relevant research focusing
on parameter tuning for planning algorithms.

II. RELATED RESEARCH

A general approach to algorithm tuning can be found in
automatic algorithm configuration methods. These methods
are optimization methods that are specifically designed to

find the best performing algorithm configuration for a spe-
cific problem instance. They often do so by running the
algorithm with a certain starting configuration and repeatedly
selecting a better configuration based on the previous results.
Historically, the problem of algorithm configuration can be
abstracted to the Design of Experiments (DOE) approach
[17], where a sequence of experiments are conducted to
understand the relationship between (physical) experimental
parameters and the associated outcomes. Typically, these
relationships are established as regression models described
by a probability distribution function mostly because, random
errors, which are an integral part of physical experiments are
well covered by probability distributions of different kinds.
Further, related methods such as Design and Analysis of
Computer Experiments (DACE) [18] are mentioned in [15]
and the references therein. Here, the effort is more focused on
computer-based (simulation) experiments which are mostly
free of random physical errors. In this sense, methods such as
in [18] are much closely related to our work in comparison
to the DOE-based methods.

Algorithm configuration can be broadly classified in two
main categories, local methods and model-based methods.
Examples of methods that use a local search are ParamILS
[13] and F-RACE [14]. For Sequential Model Based Op-
timization (SMBO) methods, a regression model is used
to predict the performance of the algorithm in previously
unseen regions. Gaussian process (GP) models are a common
choice as a non-parametric regression model [15]. One
disadvantage of GP models is that they do not deal with
categorical input data such as boolean parameters. This is
also a drawback with the aforementioned classical methods
in [17], [18]. In [16] a method is introduced that uses a
different model class for the regression named Sequential
Model-based Algorithm Configuration (SMAC). SMAC uses
random forests in order to handle categorical parameters.
Random forests are collections of regression trees, which
are known to offer good performance for categorical input
data [16]. Furthermore, SMAC has been shown to deliver
promising performance on a diverse set of expensive black-
box problems [19].

These methods have been applied to a wide variety of
problems, most notably to the tuning of solvers for computa-
tionally hard problems. These solvers are typically based on
local or tree search, often have many tuning parameters that
are very difficult to tune by hand. As an example; the mixed
integer programming solver IBM CPLEX has 76 parameters
relating to its search strategy [16].

More similar to our proposed application, automatic con-
figuration methods have been applied to classical planning
problems. An approach that is similar to our method can
be found in [20], where SMAC was used to automati-
cally tune the Fast Downward planning system. In [21],
ParamILS was used to tune the topology, transition rules
and parameter values of control software for a robot swarm.
In [22], constrained Bayesian optimization is proposed as
an optimization method that can be used to tune certain
target parameters. Using constraints on the optimization, it is

ensured that the tested configuration does not lead to safety-
critical system failures. In [23] a model-free optimization is
used to find optimal PID parameters.

Configuration and tuning of configuration space path plan-
ning algorithms in particular seems to be a less highlighted
area of research. In [24], an infrastructure that can be used
for benchmarking different configurations was introduced,
but the problem of how to select competing configurations
for each planner is left unexplored.

Typically, many parameters of planning algorithms that
we consider in this work are categorical. Therefore, we
choose SMAC as algorithm configuration and parameter
tuning method.

III. PROBLEM STATEMENT

Let X € R™ be the complete configuration space of a
robotic manipulator. Denote by X,,s C X the obstacle
space, which consists of all states of the robot that are
invalidated by collisions with either itself or the environment.
Let Xgee C X, the complement of X5, be the set of all
valid configurations in the planning space.

Define Xgiart € Xfree and Xgoal € Xiree to be a set
of states representative of the planning problem complexity.
For example, in a pick-and-place application, X4+ would
consist of pick states, and Xg,, would be place states. A
planning query) is then defined by a state pair, consisting
of a start state and a goal state:

Y= {xsta'rt € Xgtarts Tgoal € Xgoal}

The outcome of a planning query is a path which is a
sequence of states.

The set of all possible queries derived from X4+ and
Xgoar 1s denoted by . Let ¢ denote a user defined measure
that indicates the performance of a planning algorithm on
the entire set W. For k start states and m goal states, ¥
will consist of k£ x m pairs of states. Denote by P, a
target planning algorithm with ¢ configurable parameters. A
configuration for P is then denoted by a set of i-tuple:

o = {¢0a"'7¢i—1}

where ¢; is used to denote the parameter value.

Finally, a planner parameter tuning request where planner
P, with configuration ®, is required to solve a planning query
1) such that the resulting path stays in Xgee can then be
written as:

P(X,®,¥)

The problem is to find the configuration ¢ that maximizes
the performance c of planner P on the complete set of
planning queries W.

IV. METHOD

To translate the planner configuration problem into a
format that SMAC can tune, we specify three ingredients:
The algorithm A, the performance measure ¢ and the problem
instance 1.

SMAC starts by evaluating the default configuration of
A on I, and returns a performance measure after evaluating

c. Subsequently, the current configuration and corresponding
performance measure are used to update SMAC’s internal
model using:

SMAC .FitModel ()

Next, SMAC will select a new configuration to be tested.
This operation is denoted by:

SMAC.SelectConfigurations ()

SMAC uses the random forests model to formulate an
Expected Improvement function and uses a local optimization
to find the configuration that maximizes this function.

After the most promising configuration has been selected,
it is evaluated on the problem instance I. Whenever a
result has a cost lower than the current best performing
configuration the corresponding configuration will be stored
as the incumbent configuration. Finally, after the runtime
exceeds the AllowedRuntime, the incumbent configuration
and the corresponding parameter values are returned.

The main challenge with using SMAC to configure a
configuration space planner is how to formulate the problem
instance [and set up the performance measure c so that the
performance of the resulting configuration also improves the
performance over the complete set of problems W. This will
be discussed in the following sections.

A. Formulating the problem instance [

In order for SMAC to optimize towards a meaningful con-
figuration, care should be taken in formulating the problem
instance [as a function of the configuration space X and
the complete problem set .

The full problem set ¥ was split into a tuning, ¥, and
validation set W,,. Due to the random nature of the planners,
it is not feasible to use the individual problems of the
set as the problem instance. SMAC will not be able to
fit an accurate model due to the high variance. By using
the full tuning set as the problem instance I, the variance
of the resulting cost is minimized. Furthermore, the whole
set will be evaluated several times to further decrease the
variance. In choosing the number of repetitions, a trade-
off has to be made between decreasing the variance of the
planning algorithm and allowing SMAC to quickly test new
configurations.

B. Formulating the performance measure c

The performance measure c is another key element. The
goal of the performance measure is to transform the output
of a single problem query into a quantitative measure that
can be minimized by SMAC. In many practical scenarios,
the aim of tuning is to improve the solving percentage and
decreasing the planning time. Focusing on these goals, a very
effective performance measure was found to be the average
computation time.

In order to limit SMAC spending too much time on poorly
performing configurations, a planning timeout is configured
for each planner. Whenever this timeout value is reached, a
penalty value is used so that the regression model can still

Algorithm 1 SMAC Tuning
Input : Planner P, Tuning set ¥, with N queries,
Configuration space X, Iterations n,
default configuration ®.
Output : Incumbent configuration ®;,,.

1. =3

2: best = 00

3: while SMAC.Runtime < AllowedRuntime do
4: result =0

5: for i =0,...,N —1do

6: P = \I/(Z)

7: for 0,...,n—1do

8: Timer.start()

9: P(X,®,9)

10: result += Timer.stop()
11: if result < best then

12: Die =P

13: best = result

14: SMAC. FitModel(result, D)
15: ® = SMAC.SelectConfigurations()

16: return Incumbent

learn from the evaluation. The complete method is shown in
Algorithm 1.

V. RESULTS

In order to validate our tuning method, it was tested on
three different environments with two different robots: two
environments for the 6-DoF Universal-Robots URS, and one
for the 7-DoF KUKA LBR iiwa 7 R800. The following
planners were selected to be tuned:

o KPIECE This algorithm uses several heuristics in order
to guide the search. These heuristics make it hard to
predict its performance and make it an ideal candidate
for automated configuration.

e BKPIECE For much of the same reasons, the bi-
directional variant of KPIECE will also be considered.

o BIT While BIT* is actually an optimal planner, it can
easily be configured to only calculate the first solution.
As this eliminates all optimal properties of BIT*, this
planner will be denoted as BIT (without the asterisk).
With several configurable parameters, BIT is another
interesting candidate for using the SMAC tools for
tuning the parameters to a given problem requirement.

¢ RRTConnect As RRTConnect only has a single pa-
rameter, it is not expected to gain much from tuning.
However, it is worthwhile including RRTConnect as it is
a widely adopted planner in more practical applications,
known for short computation times and high solving
percentages.

o BiTRRT Although very similar to RRTConnect, it is
interesting to see whether the extra parameters that can
be tuned for BiTRRT have a greater impact on its
performance.

The experiments were conducted on a PC with a Intel i5-
3470 CPU at 3.20GHz and 8GB of RAM running Ubuntu

Fig. 1. Photo of the first target problem environment for the URS
manipulator.
TABLE I
SMAC RESULTS FOR THE FIRST URS PROBLEM
Planner Runtime Solved Path length
[ms] [%] [2-norm]

RRTConnect 36.3 100 7.3
RRTConnect - SMAC 36.0 100 7.2
BiTRRT 46.8 100 7.1
BiTRRT - SMAC 458 99 7.2
BKPIECE 254 99 7.8
BKPIECE - SMAC 108 99 74
KPIECE 95.7 100 7.8
KPIECE - SMAC 40.3 100 7.5
BIT 102 92 9.0
BIT - SMAC 52.2 99 8.9

14.04.3. To model the environment ROS Indigo was used
in combination with Moveit!. The planners that have been
tested are part of the OMPL planning library.

A. URS5 simple pick-and-place problem

The first URS5 problem represents a pick-and-place sce-
nario where the robot is to rearrange objects on a table. For
these experiments, W, consisted of 20 problems that were
each iterated 5 times for a total of 100 queries. The planning
time was selected to be 1 second and SMAC was allowed 30
minutes to find the best configuration. The validation results
were obtained by testing on a distinct validation set W,,.
Figure 1 shows a photo of the environment of the URS.
With the start close to the surface on the lower corner of
the table, and the goal states on the far corner, this can
be considered a relatively easy problem with the movement
of the URS mostly unobstructed. This allowed for SMAC
to make several hundred calls to the planning algorithm,
especially for faster planners.

Table I shows the averaged total results for the complete
validation set. The path length is represented as the average
2-norm in the configuration space of the manipulator and is
included to serve as an indicator for the planning algorithms
ability to find short paths.

As expected, RRTConnect and BiTRRT have not improved
much. For KPIECE, BKPIECE and BIT, the results are more

Fig. 2. Model of the second, more complex problem environment for the

URS manipulator.
TABLE II

SMAC RESULTS FOR THE SECOND URS5 PROBLEM

Planner Runtime Solved Path length
[ms] [%] [2-norm]
RRTConnect 165 95 10.9
RRTConnect - SMAC 146 96 10.2
BiTRRT 183 96 10.6
BiTRRT - SMAC 172 96 10.3
BKPIECE 751 45 12.6
BKPIECE - SMAC 450 94 10.6
KPIECE 443 79 11.8
KPIECE - SMAC 337 90 10.6
BIT 286 80 9.7
BIT - SMAC 266 81 9.2

striking. With computation times significantly improved and
finding shorter paths, it is safe to conclude that the tuned
configuration shows better performance than the default.

For BIT, the percentage of solved problems was increased
from 92% to 99%. Closer inspection of the results shows that
BIT was struggling with one of the problems in particular,
only managing to solve about 40% within the allocated time.
After tuning, BIT managed to solve this problem in over 95%
of the cases.

B. URS difficult pick-and-place problem

The second scenario for the URS is a more difficult one.
Aside from being in a constrained environment, the URS is
fitted with a 20 cm long vacuum tool. The problem scenario
is depicted in Figure 2. With significantly longer planning
times, SMAC could do fewer iterations in the allocated time
of 30 minutes. Instead of 5 iterations of 20 problems, this
scenario was tuned on 4 iterations of 25 problems. The start
and goal states were selected as realistic picking and placing
states, with the tip of the vacuum tool well inside the stow
bin that can be seen on the right.

Consider Table II for the results of tuning on the second
scenario. As with the first scenario, the improvement of
RRTConnect and BiTRRT is rather small. An impressive
tuning result can be seen when considering BKPIECE, whose
solving rate was increased from just 45% to 95%.

Fig. 3. Model of the environment for the KUKA problem.
TABLE III
SMAC RESULTS FOR THE KUKA PROBLEM
Planner Runtime Solved Path length
[ms] [%] [2-norm]
RRTConnect 725 100 6.5
RRTConnect - SMAC 687 100 6.6
BiTRRT 851 99 6.7
BiTRRT - SMAC 807 99 6.9
BKPIECE 1868 17 18.3
BKPIECE - SMAC 1930 18 16.2
KPIECE 1399 68 72
KPIECE - SMAC 613 99 6.0
BIT 1239 54 8.5
BIT - SMAC 871 84 6.8

C. KUKA LBR iiwa 7 problem

A problem was designed for the KUKA LBR iiwa 7
manipulator that requires maneuvering to and from different
poses inside a cabinet. The problem scenario is shown in
Figure 3. With an extra degree of freedom and several start
and goal states that are difficult to reach, this presents a more
challenging problem than the previous two.

In order for SMAC to be able to test a configuration within
reasonable time, the number of iterations were decreased and
the planning timeout increased to 2s. See Table III for the
benchmark results after tuning.

Comparing the results of this scene with the URS scenes,
it is obvious that all planners require more time to find
a feasible plan but some (BIT and BKPIECE) seem to
suffer more from the extra degree of freedom. The fact that
BKPIECE even got worse (in terms of runtime) than before
tuning, is related to the planning timeout and discussed in
Section VI. As with the previous scenarios, a significant
improvement can be observed for KPIECE and BIT.

VI. DISCUSSION

A running theme in the previous section that is substanti-
ated with the tabulated results is that automated tuning and
configuration is beneficial for all the presented algorithms.
In this section, we highlight some of the important aspects
from the obtained results. A comparison of planner parameter

TABLE IV
COMPARISON OF PLANNER PARAMETERS BEFORE AND AFTER TUNING

Before After
RRTConnect
range default! 3.33
BKPIECE
range defaultt 0.3
border_fraction 0.9 0.47
failed_expansion_score_factor 0.5 0.24
min_-valid_path_fraction 0.5 0.31
KPIECE
range defaultt 4.12
goal bias 0.05 0.2
border_fraction 0.9 0.96
failed_expansion_score_factor 0.5 0.71
min_-valid_path_fraction 0.5 0.7

¥ default indicates the value computed by Movelt! for
a given problem instance.

values before and after SMAC tuning for three planners
which showed significant improvement in performance on
all three experimental setups is shown in Table IV. Consider
for example, the KPIECE planner. We can clearly see that
along with the goal_bias parameter (which is a common
candidate for ad-hoc tuning), the use of SMAC tuning also
ensures the rest of the parameters are tuned. As a conse-
quence, these parameters collectively lead to the improved
performance seen in the experimental results. However, an
interesting analysis would be to also study the impact of each
parameter individually and use the corresponding informa-
tion to formulate better performance measures.

It is important to note that the performance improvement
is not necessarily uniform over all the problems considered.
Complex problems typically take longer to be solved and
as there is no scaling between problems in the test set,
configurations that improve on these more difficult problems
are prioritized. With the BIT* algorithm, we have observed
a number of problem queries that could not be solved even
after tuning. While tuning improved the performance on the
other problems of the set, these specific problems remained
either very difficult or outright unsolvable to BIT. A SMAC
performance measure that puts a bigger penalty on unsolved
queries can potentially be used to seek for configurations that
do manage to solve all queries, but this is a topic for further
research.

In the SMAC manual, it is advised to allow SMAC at
least 300 to 400 attempts at finding a good configuration.
In addition, the best results are achieved when SMAC is run
several times with different starting configurations. However,
in the 30 minutes of allowed planning time that was used in
the experiments, SMAC often only had time for about 100
configuration tests. As SMAC is often used for algorithms
with many more parameters than these planning algorithms,
perhaps these requirements can be relaxed somewhat, but
further research into the configuration of SMAC and the
problem instance is encouraged.

It is pertinent to note the importance of correctly spec-

ifying the performance measure and planning timeout. For
the KUKA scenario, BKPIECE only managed to solve 17%
of the queries when the timeout was set for 2s. Running
SMAC with a 2s timeout means that for each query that
goes over the average even very slightly, a planning time of
2s is reported. This means that SMAC gathers very little
information on the actual performance of a configuration,
and is not able to construct a good model. Consider Table V
for different tuning results.

TABLE V
BKPIECE TUNING RESULTS WITH A VARIABLE PLANNING TIME
BENCHMARK WAS RUN WITH 2S TIMEOUT

Planner Runtime Solved Path length
‘ [ms] [%] [2-norm]

untuned 1868 17 18.3

2's tuning 1930 18 16.2

4s tuning 1699 64 8.9

Lastly, the combination of Movelt! and OMPL has been
chosen specifically because of the seamless integration be-
tween the two software packages and the relative ease with
which the combination allows one to use different planners
for a given planning problem. However, we would like to
reiterate that our approach itself is not limited to this specific
software combination.

VII. CONCLUSIONS AND FUTURE WORK

Our goal was to come up with a tool to enable easy tuning
of planning algorithms for a given problem. To this end, we
present the SMAC-based tuning method in our work and
substantiate the achieved performance improvement in three
realistic scenarios using industrial manipulators. Our primary
goal with this work is to minimize the amount of background
knowledge required to use planning algorithms, particularly
in industrial robotic applications. Our long term goal is to
further develop this approach in an extensive manner to
include any dynamic parameters as well. Eventually, we
would like to enable robotics end-users to transition from
teaching task specific motions to robots to using planning
algorithms to perform task specific motions.

ACKNOWLEDGEMENT

The work leading to these results has received funding
from Technolution B.V and from the European Commu-
nity’s Seventh Framework Programme (FP7/2007-2013) un-
der grant agreement No. 609206.

REFERENCES

[1] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System, in ICRA Workshop on Open Source Software, 2009

[2] . A. Sucan and S. Chitta. Movelt! [Online]. Available:
http://moveit.ros.org

[3] R. Diankov. “Automated construction of robotic manipulation pro-
grams,” Ph.D. dissertation, Carnegie Mellon University, Robotics
Institute, 2010.

[4] L. Jaillet, J. Corts, and T. Simon, “Sampling-based path planning on
configuration-space costmaps,” IEEE Transactions on Robotics 26(4),
635-646, 2010

[5]

[6]

[7]

[8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

J. D. Gammell, S. S. Srinivasa and T. D. Barfoot, “Informed RRT*:
Optimal sampling-based path planning focused via direct sampling
of an admissible ellipsoidal heuristic,” in 2014 IEEE International
Conference on Intelligent Robots and Systems (IROS), 2014, pp. 2997-
3004.

J. D. Gammel, S. S. Srinivasa, T. D. Barfoot, “Batch informed
trees (BIT*): Sampling-based optimal planning via the heuristically
guided search of implicit random geometric graphs,” in 2015 IEEE
International Conference on Robotics and Automation (ICRA), 2015,
pp. 3067-3074.

I. A. Sucan and L. E. Kavraki, “Kinodynamic motion planning by
interior-exterior cell exploration”, Algorithmic Foundation of Robotics
VIII. Springer Berlin Heidelberg, 449-464, 2009.

I. A. Sucan, M. Moll and L. E. Kavraki, “The Open Motion Plan-
ning Library”, IEEE Robotics & Automation Magazine, 19(4):72-82,
December, 2012, http://ompl.kavrakilab.org

B. Cohen and M. Likhachev, “The Search Based Planning Library
(SBPL)”, 2009, [Online] Available: http://www.ros.org/wiki/sbpl

N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP:
Gradient optimization techniques for efficient motion planning,” in
IEEE International Conference on Robotics and Automation (ICRA),
2009, pp. 489-494.

M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor and S. Schaal,
“STOMP: Stochastic trajectory optimization for motion planning.”, in
IEEE International Conference on Robotics and Automation (ICRA),
pp. 4569-4574, 2011.

J. Kuffner and S. LaValle, “RRTConnect: An efficient approach
to single-query path planning,” IEEE International Conference on
Robotics and Automation (ICRA), pp. 995-1001 vol.2, 2000.

F. Hutter, H. Hoos, K. Leyton-Brown, and T. Sttzle, “ParamILS: an
automatic algorithm configuration framework.” Journal of Artificial
Intelligence Research, 36(1), 267-306, 2009.

M. Birattari, Z. Yuan, P. Balaprakash, and T. Sttzle, “F-Race and
iterated F-Race: An overview.”, Experimental methods for the analysis
of optimization algorithms, (pp. 311-336), Springer Berlin Heidelberg,
2010.

F. Hutter. “Automated configuration of algorithms for solving hard
computational problems.” Diss. University of British Columbia, 2009.
F. Hutter, H. Hoos, and K. Leyton-Brown. “Sequential model-based
optimization for general algorithm configuration.” Learning and Intel-
ligent Optimization, 507-523, Springer Berlin Heidelberg, 2011.

H Robbins. “Some aspects of the sequential design of experiments.”
Bulletin of the American Mathematical Society 58, 527-535, 1952.

J Sacks, W. Welch, T. Mitchell and H. Wynn. “Design and Analysis
of Computer Experiments.” Statistical Science 4, 409-423, 1989.

F. Hutter, H. Hoos, and K. Leyton-Brown. “An evaluation of se-
quential model-based optimization for expensive blackbox functions.”
Proceedings of the 15th annual conference companion on Genetic and
evolutionary computation. ACM, 2013.

J. Seipp, S. Sievers, M. Helmert and F. Hutter, “Automatic Config-
uration of Sequential Planning Portfolios.”, AAAI, pp. 3364-3370,
January, 2015.

G. Francesca, M. Brambilla, A. Brutschy, V. Trianni and M. Birattari,
“AutoMoDe: A novel approach to the automatic design of control
software for robot swarms.”, Swarm Intelligence, 8(2), 89-112, 2014.
F. Berkenkamp, A. Krause, and A. Schoellig. “Bayesian Optimization
with Safety Constraints: Safe and Automatic Parameter Tuning in
Robotics.” arXiv preprint arXiv:1602.04450, 2016.

N. Killingsworth, J. Nick, and M. Krsti¢. “PID tuning using extremum
seeking: online, model-free performance optimization.” Control Sys-
tems, IEEE 26.1, 70-79, 2006.

M. Moll, I. Sucan and L. Kavraki, “Benchmarking Motion Planning
Algorithms: An Extensible Infrastructure for Analysis and Visualiza-
tion.”, IEEE Robotics & Automation Magazine, 22(3):96102, Septem-
ber, 2015.

F. Hutter, H. Hoos, K. Leyton-Brown, and K. Murphy, “An experi-
mental investigation of model-based parameter optimisation: SPO and
beyond.”, Proceedings of the 11th Annual conference on Genetic and
evolutionary computation, pp. 271-278, ACM, July 2009.

